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Canopy structural and chemical data are needed for senescent, mixed-grass prairie
landscapes in autumn; yet data-driven models are lacking for rangelands dominated by
non-photosynthetically active vegetation (NPV). We report how field data and aerial
hyperspectral imagery were modeled to predict canopy attributes post growing-season
using two approaches: (1) application of narrow spectral regions with Vegetation
Indices (VIs) and (2) application of the full spectrum with Partial Least Squares
Regression (PLSR). Analyses of the full spectrum using PLSR resulted in slightly
lower root-mean-square error of prediction, as compared to VIs, which represent
reflectance ratios for specific spectral bands.

Keywords: remote sensing; grassland; landscape; Partial Least Squares Regression
(PLSR); Vegetation Indices (VIs); Short-Wave InfraRed (SWIR)

Introduction

Adaptive rangeland management plans require data at local and landscape scales to assess
effects of climate and disturbances on canopy structural and chemical characteristics, such as
photosynthetically active vegetation (PV), non-photosynthetically active vegetation (NPV),
total standing crop (TSC), canopy nitrogen (N) content, percent bare ground (%BG), and
canopy height (Moran et al. 1997; Hunt et al. 2003). Furthermore, agencies tasked with
managing rangelands for multiple ecosystem functions often require these data pre, post, and
during the growing season, particularly for wildlife habitat assessment (Dechant et al. 2002;
Fisher and Davis 2010; Herrick et al. 2012). Managers in North and South Dakota, USA,
typically manually measure canopy height in autumn after cattle are removed to evaluate the
remaining canopy structure important to rare and threatened avian species. Another, perhaps
complementary approach includes synoptic mapping of canopy structural attributes with
remote sensing-based data (Pickup et al. 1994; Toevs et al. 2011). Remote sensing techniques
have been developed when plants are mostly green to help meet rangeland forage information
needs (Tucker et al. 1983; Guerschman et al. 2009; Brinkmann, Dickhoefer, et al. 2011;
Brinkmann, Patzelt, et al. 2011), but techniques are lacking for senescent canopies post-
growing-season (Tucker 1978; Roberts et al. 1993; Roberts et al. 1998; Rundquist 2002). The
need to assess rangelands following grazer removal in autumn (Bement 1969) and the
potential for hyperspectral data applications are clear; however, specific approaches to
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understanding and modeling senescent mixed-grass prairie need to be evaluated for expansive
rangeland landscapes in the northern Great Plains.

Rangeland canopies near the 100th meridian are often mixtures of PV and NPV
(Frank and Aase 1994; Beeri et al. 2007), and remote sensing techniques for canopies
dominated by PV have been developed. Several groups have investigated how vegetation
indices (VIs) derived from airborne hyperspectral data can be modeled to estimate
biomass, N content, and leaf area during the growing season (Jacquemoud et al. 1995;
Kokaly and Clark 1999; Beeri et al. 2007). For example, the best predictor for savannah
and mixed-grass prairie PV during the growing season was the Normalized Difference
Vegetation Index (NDVI) derived from hyperspectral imagery (Gamon et al. 1997; Beeri
et al. 2007; Guerschman et al. 2009; Brinkmann, Dickhoefer, et al. 2011; Brinkmann,
Patzelt, et al. 2011). Guerschmann et al. (2009) also found that spectral data available
from the Moderate Infrared Spectrometer (MODIS), the simple ratio (ρ2130/ρ1640), was the
optimum VI for estimating fractional cover of NPV. Airborne hyperspectral imagery has
also been applied post growing-season to estimate annual crop cover (corn, wheat and
alfalfa residues) with the Cellulose Absorption Index (Daughtry et al. 2005). However,
residues for monocultures are more homogeneous than senescent native rangelands, and
these natural environments comprised of mixed-materials present challenges for biomass
estimations using VIs (Guo et al. 2003; Fava et al. 2009; Guerschman et al. 2009;
Brinkmann, Dickhoefer, et al. 2011; Brinkmann, Patzelt, et al. 2011). Consequently, this
work required analysis of not only several well-established VIs, but also analysis of the
entire spectrum with PLSR.

PLSR is a common method for analyzing airborne hyperspectral data, particularly for
images collected during the growing season. Huang et al. (2004) demonstrated that PLSR
was a better alternative to conventional stepwise regression for estimating foliar N in
eucalypt tree canopies. Schmidtlein and Sassin (2004) used PLSR for mapping floristic
gradients in grasslands, and PLSR predicted wheat biomass with reflectance measure-
ments obtained with a field spectrometer (Hansen and Schjoerring, 2003). Cho et al.
(2007) also concluded that modeling airborne hyperspectral data with PLSR led to more
accurate prediction of herbaceous green biomass than VIs. The predictive potential of
PLSR using airborne hyperspectral imagery in senescent rangelands post growing-season
still requires investigation.

The primary objectives of this research were to (i) assess the utility of hyperspectral
VIs derived from airborne hyperspectral imagery to predict PV, NPV, TSC, N content, and
%BG for a herbaceous rangeland landscape in autumn, (ii) determine whether PLSR
results in lower prediction errors for canopy attributes when compared to VI-based
models, and (iii) determine which of the four spectral regions [visible (VIS), near infrared
(NIR), short-wave infrared one (SWIR1), or short-wave infrared two (SWIR2)] contrib-
uted most to predictive performance. To achieve these objectives, field data and airborne
images collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were
collected over the Grand River National Grassland, South Dakota. Predictions using VI
model selection and PLSR procedures were determined and compared using calibration
and test data sets.

Materials and methods

Study area description

Our research site is located at the Grand River National Grassland (GRNG), South
Dakota, USA (45.7°N, 102.5°W) within the Northern Great Plains ecoregion (Omernik
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1987). About 75% of the annual precipitation (350 mm) occurs during the growing season
(April–September). Average monthly temperature is highest in July (21°C) and lowest in
January (–9°C). Topography ranges from open plains to rolling grassland prairie, with
elevations from 670–880 m. Soils are predominantly well-drained, moderately deep,
moderately permeable, fine-loamy, mixed, superactive, and frigid Typic Argiustolls. The
GRNG is a mixed-grass prairie ecosystem characterized by blue grama [Bouteloua
gracilis (H.B.K.) Lag. Ex Griffiths] and western wheatgrass [Pascopyron smithii (Rybd)
Lőve]. Many of the GRNG lowlands were farmed in the early twentieth century and are
now dominated by crested wheatgrass [Agropyron cristatum (L) Gaertn.]. The GRNG is
seasonally grazed by cattle, and stocking rates are approximately one animal unit per
hectare between May and October each year.

Field data collection site details are fully described in Phillips et al. (2012). Briefly, a
100,000 ha landscape of interest (LOI) in the center of the GRNG was selected for this
study and stratified to ensure field data were representative of the landscape for herbac-
eous vegetation (Pickup et al. 1994; Toevs et al. 2011).We identified herbaceous
vegetation areas using a Landsat 5 image and geo-located species data in the
Definiens eCognition Developer (v.7)® object-based classification software. Further,
we modeled Digital Elevation Model (DEM) data [http://ned.usgs.gov/(Gesch et al.
2002)] and classified the landscape into three topographic positions: summits, mid-
slopes, or toeslopes (Qin et al. 2009). We also evaluated historical (10 y) reflectance
data collected by the Moderate Resolution Imaging Spectrometer (MODIS) sensor using
the Enhanced Vegetation Index (EVI) collected in June and July from 2000 to 2009. We
identified four classes (from low to high EVI values) using an unsupervised classifica-
tion in geographic information systems (GIS) that comprised more than 98% of the
herbaceous vegetation LOI. All of the herbaceous landscape was assigned into one of
the four groups, which we refer to as a Historic Vegetation Index (HVI). We randomly
selected six plots within each HVI class. Within each plot, the south facing slope nearest
to the plot center was selected and divided into summit, midslope, and toeslope positions
for a total of 72 sample sites. Consistent trends in species covered by topographic
position groups were previously reported for all sites (Phillips et al. 2012), where mid
and toeslopes were dominated by mid-grass species, such as P. smithii and summits were
dominated by short-grass species, such as B. gracilis. Data collected in July 2010
indicated PV, NPV, TSC, N, and height did not vary with HVI class but did vary with
topographic position group (Phillips et al. 2012).

Field data collection

At each of the 72 sites, vegetation height was measured 3 m from center in each of the
four cardinal directions with a Robel pole (Robel et al. 1970; Uresk and Benson 2007).
After recording the height, a 0.187-m2 frame was placed in front of the Robel pole. A
visual estimate of the percent vegetation and bare ground cover within the frame was
recorded using the Daubenmire method (Daubenmire, 1959). All vegetation within the
frame was clipped to 2 cm above the soil surface, separated into PV and NPV groups, and
dried for 48 h at 60°C. Total standing crop biomass (TSC, kg ha−1) was calculated as the
sum of PV and NPV. Vegetation for PV was ground separately from NPV through a 1-mm
mesh screen, and analyzed for total N using dry combustion on a Carlo Erba Model NA
1500 Series 2 N/C/S analyzer (CE Elantech, Lakewood, NJ). Canopy N content
(kg N ha−1) was calculated using N content and mass for both PV and NPV vegetation.
Average PV, NPV, TSC, Canopy N, and percent vegetation cover by point were used in all
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subsequent analyses. Each point was precisely geo-located (<1 m spatial resolution) using
a Global Positioning System (Trimble Geo XT).

AVIRIS data collection and correction

Airborne AVIRIS data were collected on 21 October 2010 over the study area during the
field campaign. The flight was carried out by NASA’s Jet Propulsion Laboratory (JPL),
Pasadena, CA on a Twin Otter aircraft. The AVIRIS sensor operates over the spectral
range of 360–2500 nm using four on-board spectrometers (VIS, NIR, SWIR1, and
SWIR2). Average spectral and spatial resolutions for the data collected were 10 nm and
4 m, respectively. Data were acquired over the 72 sample sites in six image strips under
clear, cloud-free conditions. Field sites were located near the center of each image strip.
Image acquisition was close to solar noon and the solar zenith and azimuth angles for the
six image strips ranged from 57 to 60 and from 170 to 205, respectively. The images were
processed by NASA and then atmospherically corrected using the Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in the ENVI/IDL®

software (Atmospheric Correction Module 4.7) and converted to units of reflectance
(scaled between 0% and 100%).

Dataset accuracy and quality were evaluated for each image according to Beeri et al.
(2007). Briefly, we geometrically corrected each image in the projection UTM Zone 13
North, Datum WGS 84 with 1 m resolution aerial photography from the National
Agriculture Imagery Program. Twelve ground control points were identified that were
spatially distributed throughout our AOI. We found geo-location root-mean-square-error
(RMSE) was smaller than one-half pixel. To evaluate signal-to-noise ratio (SNR), spectra
were collected from uniform areas in each image. Low SNRs for wavelengths <500,
1353–1423, 1812–1937, and >2470 were eliminated from the dataset, for a total of 180
bands remaining. We evaluated image homogeneity for all bands using spectral signatures
from roads that cross each image. We confirmed that image reflectance values were
similar to ground-based reflectance values recorded at uniform areas. We extracted data
for each sample point using a 2 × 2 pixel window (i.e., 8 × 8 m) centered on each GPS
waypoint to include the full (6 × 6 m) sample plot area. Vegetation indices (Table 1) were
calculated for each pixel, and mean values for each of the 72-pixel windows were
compared with field data.

Statistical analyses

We investigated the potential for AVIRIS reflectance values to predict PV, NPV, TSC,
Canopy N content, and %BG by 1) analyzing the entire spectrum and 2) analyzing only
specific spectral regions with VIs. For the first, we fit PLSR (Garthwaite, 1994) models
for each dependent variable using the reflectance data collected for all spectral bands.
For the second, we applied model selection procedures using a suite of established VIs
as candidate predictors (Table 1). We aimed to build linear prediction models that
included spectral, topographic position and HVI class data. The model selected for
each prediction method was tested iteratively by partitioning the available data at
random 1000 times into training and test sets. For each partition, models were fitted to
each training set and these were used to predict observations in each test set. The ratio of
training samples to test samples in each of the 1000 partitions was chosen as 2:1.
Goodness-of-fit for each model was reported in terms of average R2 across the random
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partitions, which was calculated by the square of the Pearson correlation between
observed and predicted response. We also computed root mean square error of prediction
(RMSEP) to provide a direct estimate of the modeling error expressed in original
measurement units:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Mi � Pið Þ2
n

s
(1)

where Pi and Mi were the predicted and measured crop variables, respectively, and n the
number of samples (n = 72). RMSEP provides a direct estimate of the modeling error
expressed in original measurement units. Statistical computations were conducted using
both SAS (SAS System for Windows, copyright© 2002–2008, SAS Institute Inc., Cary,
NC, USA) and R statistical package (http://R-Project.org).

Partial least squares regression approach

We developed PLSR prediction models (one for each dependent variable) in the form
Ŷ ¼ Rx: β̂ using the method of de Jong (de Jong, 1993) where Ŷ is an n� 1 vector of
predictions of vegetative growth and Rx is an n� p matrix of reflectance values. Each row
vector of R consists of p discrete entries of reflectance values Rx representing the amount
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% BG
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Figure 1. R2 computed from the PRESS statistic is plotted against the number of factors used in
PLS prediction models for models including up to 10 factors. These plots were used as a guide for
determining the least number of factors to use for PLS regression for each canopy attribute. R2 is
greater when prediction is based on five factors for PV, NPV, TSC and %BG, but R2 is greater when
three factors are used for predicting Canopy N.
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of reflectance at band x. Reflectance was measured for p ¼ 180 distinct bands ranging
from 511 nm to 2457 nm (i.e., 511 � x � 2457Þ. Leave-one-out cross validation was used
on the entire data set to determine the number of factors to be used for PLSR regression.
We chose the number of PLSR factors based on the PRESS statistic and R2 values for
each response variable (Figure 1). The latter is computed as R2 ¼ 1� SSE=SST where
SSE is the residual sum of squares for the cross-validated predictions and SST is the
(corrected) total sums of squares for the response.

We evaluated the ability of PLSR to predict canopy attributes using Monte Carlo
sampling. Sixteen plots (four plots of six possible from each of four HVI classes) were
randomly sampled for the training set for each of 1000 Monte Carlo trials. Data from the
remaining eight plots not used in the training dataset comprised the test data set in each
Monte Carlo trial. The fitted PLSR for each Monte Carlo trial was used to predict
observations of canopy response in both the trial and test data sets and the squared
correlation coefficient between fitted and observed was computed for all trials. These
were used to test how well the fitted regressions could predict observations not used in
fitting the models. Monte Carlo evaluations of the models were conducted separately from
the Monte Carlo trials used for model selection.

An additional step was taken to further constrain spectral regions most influenced by
measured canopy attributes using principal components. The data were analyzed with
respect to the spectral regions, or banks of detectors, collected at the AVIRIS sensor.
The AVIRIS is comprised of four spectrometers, and each collect VIS (360–670 nm),
NIR (660–1280 nm), SWIR1 (1260–1880 nm), or SWIR2 (1880–2500 nm) data (Green
et al. 1999). For each spectral region, only two principal components (on the variance–
covariance, unscaled data) were needed to capture most (~99%) of the reflectance
information within each region (data not shown). Therefore, two components for each
region were used to determine the spectral region most highly influenced by a given
canopy attribute. These components were named VIS-1, VIS-2, NIR-1, NIR-2, SWIR1-
1, SWIR1-2, SWIR2-1, and SWIR2-2. The first principal component for each region can
be interpreted as a size component because the principal component loadings (the
correlations between reflectance at each band and the principal component scores) are
approximately the same size and sign for all bands. The second principal component is a
contrast of spectral regions, where one region correlates bands with higher than average
reflectance and the other region correlates bands with lower than average reflectance.
These components loadings vacillate between negative and positive at most only two
times, allowing for a straightforward interpretation of the components.

Both the R package “pls” and the SAS procedure PROC PLS were used to fit the PLS
regressions. Both software packages provided the same regression model fits but the R
package “pls” was used to facilitate simulation for evaluating goodness of fit. Coefficients
from the fitted PLS equations were plotted against corresponding bands with the intention
of identifying bands most important for prediction. Standard errors for the PLSR coeffi-
cients were bootstrapped using “random X sampling” and were used to standardize the
coefficients that were plotted.

Model selection approach

Our second approach involved model selection procedures aimed toward identifying the
VI, or combination of VIs (Table 1) that were most predictive of canopy attributes
computed from AVIRIS spectral band data. The procedures included historical reflectance
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class (HVI) and topographic position group for each sample site and VIs as candidate
predictors. In addition, we allowed for the squared term for each VI to be included as a
predictor as well as any two-way interaction among the VIs, HVI class, and topographic
position group. Thus, 349 regression effects were entered as possible predictors to be
included in a model for each canopy attribute. Our approach for model selection was
based on re-sampling and model selection frequency and incorporated both Akaike and
cross-validation criteria. To carry out the re-sampling model selection, the following
algorithm was used.

Re-Sampling Model Selection Algorithm

Do the following steps 1000 times.

(1) Randomly partition the data to form two sets.
(a) From each HVI class select four plots at random. This partitioned the data set

into a training set and a validation set. The remaining two plots not selected
in each HVI class are used to create a validation set. Partitioning in this
manner ensures equal representation of both HVI class and topographic
position group.

(2) Use stepwise regression on the partitioned data to choose a prediction model.
(a) Order in which effects enter model based on the Akaike Information

Criterion.
(b) Significance level for effects to enter set at 0.05.
(c) Significance level for effects to stay set at 0.10.
(d) Choose the model among the steps of model selection with the smallest

average mean squared prediction error (AMSE) from the validation sample.
(e) Require model hierarchy, so that when interactions between two variables are

entered, each of these variables is also included in the model.
(3) Record the chosen model for each partition (i.e., each Monte Carlo sample)

(a) Report selected models and model selection frequencies

The model selection described above was carried out in SAS using the SURVEYSELECT
procedure to randomly partition the data and the GLMSELECT procedure with options
choose = validate, select = aicc, sle = 0.05, sls = 0.10, stop = sl and hier = single to carry
out model selection for each partition.

The statistic described above avoided over-fitting by using random partitioning and re-
sampling to identify the most reliable model or models. We compared these results with
the more conventional stepwise regression approach using the same suite of VIs (Table 1).
The conventional stepwise regression selected the model that minimized the PRESS
statistic (leave one out cross-validation) but did not randomly partition and resample the
data.

Field data analyses

Total standing crop (kg ha−1), NPV (kg ha−1), PV (kg ha−1), Canopy N (kg ha−1), and
canopy height (cm) were analyzed separately by fitting a generalized linear mixed
model (SAS System for Windows, copyright © 2002–2008, SAS Institute Inc., Cary,
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NC, USA). The model-fixed effects included topographic position, HVI class, and the
interaction of topographic position and HVI group, and random effects included plot and
plot × topographic position. A Tukey–Kramer test was used to determine if least-square
mean values at specific topographic positions or specific HVI groups were significantly
different from each other. TSC was regressed on canopy height to determine the
relationship between TSC and height for October 2010 (Vermiere et al. 2002; Uresk
and Benson 2007).

Results

Field data

Similar to data collected at these points in July, measured canopy attributes varied
significantly with topographic position (Table 2), including PV (F2,40 = 9.30;
p < 0.0005), TSC (F2,40 = 18.05; p < 0.0001), NPV (F2,40 = 15.24; p < 0.0001), canopy
N (F2,40 = 35.50; p < 0.0001), bare ground (F2,40 = 23.78; p < 0.0001), and canopy height
(F2,40 = 29.14; p < 0.0001). Neither HVI class nor HVI class × topographic position
interaction was significant for any of these variables. The effects of topographic position
were clear, with TSC, PV, NPV, height, and Canopy N lowest at summits and %BG
highest at summits.

The TSC and canopy height data were fitted with a linear regression (R2 = 0.62),
where

TSC ¼ 50:36 þ 262ðCanopyHeightÞ (2)

The proportion of PV by topographic position group ranged from <0.01 at summits to
0.12 at toeslopes (Table 2). Average (± standard error) green leaf area index calculated
using PV mass (Phillips et al. 2012) was 0.09 (0.02) for all 72 sites.

Partial least square regression (PLSR)

The R2 value (based on the PRESS statistic for PLSR using leave-one-out cross-valida-
tion) was plotted against the number of factors used (Figure 1). The number of factors that
maximized this statistic was five for all canopy variables except for Canopy N which was
three. The fitted PLS regression for each Monte Carlo trial predicted observations of
canopy responses for both the training and test datasets. The average R2 and associated

Table 2. Average (± standard error) for canopy mass, height, percent bare ground, and proportion
of photosynthetically active vegetation (PV) collected 21 October 2010 for each topographic
position group (n = 24).

Canopy attribute Summit Midslope Toeslope

PV (kg ha−1) 4 (4) 118 (50) 260 (59)
NPV (kg ha−1) 650 (52) 1670 (130) 2040 (200)
TSC (kg ha−1) 660 (54) 1790 (170) 2300 (200)
Canopy N (kg ha−1) 53 (2) 51 (2) 45 (4)
Height (cm) 4 (0.2) 6 (0.5) 8 (0.7)
Bare Ground (%) 28 (3) 14 (3) 6 (2)
Proportion PV 0.01 (0.01) 0.05 (0.02) 0.12 (0.03)
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standard error across all Monte Carlo samples for both training and test samples is
reported in Table 3. The overall fit statistics, based on fitting a PLSR to the entire dataset,
is reported in Table 4. Standardized regression coefficients of the PLSR using the entire
dataset for prediction are plotted in Figure 2.

Analyses of two components within each of the four banks of detectors collected at
the AVIRIS sensor indicated the second component in the first SWIR region (from 1260
to 1880 nm) was an important predictor for all measured canopy attributes (Table 5). For
NPV and TSC, the second component in the visible region also contributed to predictions.
For %BG, the second component of the second SWIR region (from 1880 to 2500) and the
second component in the near infrared region (from 660 to 1280) were also predictive of
changes in %BG.

Re-sampling model selection

The models selected with the greatest frequencies for each variable are reported in
Table 6. The model for each canopy variable is listed under the column with the header
“vegetation indices”. For example, the model most frequently selected for predicting
Canopy N was NDVI, which was selected 370 out of 1000 times among the Monte
Carlo trials. For the case of PV, the MTVI2 was selected 379 times and both
MTVI2 + MTVI22 were selected 272 times. We report the quadratic model with selection

Table 3. Average R2 (standard error) for each variable based on PLS fit for both training and test
sets for all 1000 Monte Carlo trials.

Partial least squares regression

Canopy attribute Number of factors R2
train R2

test RMSEP

PV 5 0.73 (0.07) 0.72 (0.15) 118 (28)
NPV 5 0.55 (0.06) 0.57 (0.12) 587 (127)
TSC 5 0.62 (0.06) 0.63 (0.11) 611 (123)
Canopy N 3 0.67 (0.05) 0.68 (0.10) 6 (1)
%BG 5 0.70 (0.10) 0.58 (0.20) 10 (3)

Note: Root mean square error of prediction (RMSEP) indicates prediction error in kg ha−1 for PV, NPV, TSC, and
Canopy N and as a percentage for %BG.

Table 4. R2 by factor based on PLS fit for each variable using all data.

Cumulative percent variation explained

Canopy attribute Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

PV 58.8 60.1 69.6 71.0 73.7
NPV 33.0 35.6 45.3 49.8 54.0
TSC 46.8 48.2 54.2 57.3 60.8
Canopy N 63.2 64.8 66.0
%BG 30.3 49.1 55.2 62.3 66.5

Notes: R2 for reflectance was based on jointly fitted model. Factors are orthogonal linear combinations of
predictors that explain variance in both the predictor variables and the response variable(s).
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frequency 651 = 379 + 272 as optimum for prediction of PV. The model selected the
SWIR-SR ρ2128/ρ1642 and REI for prediction of %BG. Coefficients of determinism for
%BG were similar for both PLSR and VI model selection procedures (R2 = 0.58).
Selected VIs and coefficients for each canopy attribute are as follows:

CanopyN ðkg ha�1Þ ¼ ð92:12 � NDVIÞ � 17:32 (3)

PV ðkg ha�1Þ ¼ ½ð254:26 � MTVI2 Þ þ ð14759:57 �MTVI22Þ� � 30:37 (4)
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Figure 2. Standardized coefficients for PLS regression based on fitting entire dataset.

Table 5. Model selection, as performed by partitioning the data into the four spectral regions
collected at the AVIRIS sensor, with two components each: VIS1, VIS2, NIR1, NIR2, SWIR11,
SWIR12, SWIR21, and SWIR22.

Canopy Attributes

Model Selection

Indices Frequency R2
train R2

test

PV SWIR12 + SWIR122 744 0.67(0.075) 0.66(0.150)
NPV VIS2 + SWIR12 743 0.48(0.079) 0.49(0.149)
TSC VIS2 + SWIR12 484 0.57(0.067) 0.57(0.127)
Canopy N SWIR12 792 0.64(0.057) 0.66(0.118)
Bare ground NIR2 + SWIR12 + SWIR22 495 0.56(0.071) 0.51(0.149)

Notes: Analysis was performed for the purpose of determining the spectral regions that most influenced PLSR
predictive performance, R2 (standard error).
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NPV ðkg ha�1Þ ¼ 1401 � 2003� SWIR � SR
ρ2128
ρ1642

� �� �
(5)

TSC ðkg ha�1Þ ¼ 8032 � 10148 � SWIR� SR
ρ2128
ρ1642

� �� �
(6)

%BG ¼ �67:38� 108:06REI
ρ705
ρ754

� �� �
þ 259:93SWIR� SR

ρ2128
ρ1642

� �� �
(7)

Results using conventional stepwise regression are listed in Table 7. Compared to re-
sampling model selection, conventional stepwise selected more VIs for each variable and
R2 values were higher. Root-mean-square-errors of prediction (RMSEPs), however, were
similar (Table 6). For TSC, both re-sampling and conventional stepwise results were the
same. Both statistics selected only SWIR-SR (ρ2128/ρ1642) for prediction of TSC, with an
RMSEP of 692 kg ha−1. This RMSEP for TSC corresponds to a change in canopy height
(Equation 2) ranging from approximately 1 to 4 cm and is near the average for summit
TSC collected in the field (Table 2).

Mapping modeled canopy attributes

Equations 6 and 7 were used to map TSC and %BG using the October 2010 image for an
8 km2 area previously burned in April 2010. The fire line was mapped by the USFS
directly after the burn and is outlined in blue (Figure 3). The map of %BG indicates a
higher percentage of bare ground inside the fire line for the entire area burned 6 months
earlier. The map of TSC, on the other hand, does not follow the same pattern inside the
fire line. Data from the six field sites located inside the burned area indicated higher than
average %BG and average TSC, which parallels modeled data in Figure 3. Further,
topographic relationships between %BG and TSC are evident in Figure 4. East of the
fire line, %BG follows a topographic gradient, with higher %BG at summits than at
toeslopes. TSC is lower at summits and higher at toeslopes both inside and outside of the
fire line. Finally, Figure 3 depicts a stocktank location and trails to the stocktank, where
high percentages of bare ground were mapped. TSC estimates are also low at stocktank
and trails, as expected for well-trodden areas.

Table 6. Selection frequencies and average R2 (standard error) for both training and validation sets
for all 1000 Monte Carlo trials, based on re-sampling model selection procedures.

Canopy attributer

Re-sampling model selection

Vegetation indices (VI) Frequency R2
train R2

test RMSEP

PV MTVI2 + MTVI22 651 0.69(0.09) 0.67(0.171) 126 (91)
NPV SWIR-SR (ρ2128/ρ1642) 445 0.44(0.05) 0.45(0.105) 684 (499)
TSC SWIR-SR (ρ2128/ρ1642) 764 0.54(0.05) 0.55(0.088) 692 (499)
N NDVI 370 0.62(0.06) 0.63(0.114) 8 (6)
%BG REI + SWIR-SR (ρ2128/ρ1642) 325 0.62(0.10) 0.58(0.183) 9 (6)

Notes: R2 for reflectance was based on jointly fitted model. Factors are orthogonal linear combinations of
predictors that explain variance in both the predictor variables and the response variable(s).
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Discussion

We found lower prediction error for measured canopy structural attributes when using
PLSR, as compared to VI model selection analyses (Tables 3, 6, and 7). Similar to Cho

Figure 3. Modeled TSC and %BG for an 8 km2 area of interest using AVIRIS data collected
21 October 2010. The west side of this area (outlined in blue) was burned in April 2010.
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et al. (2007), prediction performance was greater when all bands of the spectra were
employed rather than specific regions of the spectrum. Unlike Cho et al. (2007), our
herbaceous canopy was largely senescent, with average green leaf area index <0.1. Cho

Figure 4. Modeled TSC and %BG draped on topography within the 8 km2 area of interest depicted
in Figure 3 using AVIRIS data collected 21 Oct 2010. The west side of this area (outlined in blue)
was burned in April 2010.
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et al. (2007) reported a coefficient of determinism for green standing crop mass during the
growing season using HyMap imagery (R2 = 0.53) that was comparable to our total
standing crop mass post growing-season (R2 = 0.63). Both studies suggest that PLSR may
be more effective for estimating canopy mass in mixed-grass rangelands than VIs. Better
predictive performance with PLSR may be attributed to the procedure finding surrogate
spectral features for estimating target properties (Gomez et al. 2008). Percent bare ground,
on the other hand, was predicted equally well with PLSR and with the combination of
both the SWIR-SR (ρ2128/ρ1642) and the REI (ρ705/ρ754) vegetation indices (Equation 7).

The analyses performed on the four banks of detectors collected at the AVIRIS sensor
pointed to the importance of the SWIR spectral region in autumn. All canopy attributes
were responsive in the SWIR region, and a small number of components explained most
of the variability in each region (Table 5). Others have also noted that selected subsets of
hyperspectral data may include almost all of the information in the full spectrum (Fourty
and Baret 1997; Darvishzadeh et al. 2011), and selected subsets likely vary seasonally. We
found the second component in the SWIR region (1260–1880 nm) contained most of the
relevant information (Table 1) at this time of the year for mixed-grass prairie. Fitzgerald
and Ustin (1992) also noted correlations between California grassland biomass and
AVIRIS reflectance data in the SWIR. Absorption in the SWIR is known to increase
with lignin and cellulose (Kokaly et al. 2003; Daughtry et al. 2005), leading to lower
values for SWIR-SR (ρ2128/ρ1642) as TSC increases. Higher values for the SWIR-SR
(ρ2128/ρ1642), on the other hand, tend to indicate less TSC and more bare soil (Guerschman
et al. 2009). The SWIR, rather than the VIS or NIR regions, was the most important
spectral region for prediction of PV, according to PLSR results. The average proportion of
PV comprising these canopies was extremely low (<0.1), so we did not see typical PV
response in the VIS and NIR regions.

The re-sampling VI model selection procedure indicated the SWIR-SR (ρ2128/ρ1642)
was the single VI most predictive of TSC and NPV, with generally greater values of TSC
and NPV at lower values of SWIR-SR (ρ2128/ρ1642). Guerschmann et al. (2009) also found
a similar ratio, SWIR-SR (ρ2130/ρ1640), could be used to separate the fraction of PV from
NPV cover in tropical savannah when used in combination with NDVI. Unlike
Guerchmann et al. (2009), NDVI was not selected as an important predictor for senescent
TSC, NPV, or PV but was selected for prediction of Canopy N content. Similar to
(Haboudane et al. 2004), MTVI2 and MTVI22 were identified as optimum predictors of
PV instead of NDVI. Differences between Guerchmann et al. (2009) and this study
illustrate how VI selection often depends on ecosystem properties and the time of year
imagery are acquired (Cho et al. 2007; Fava et al. 2009).

Delineation of %BG from senescent vegetation is challenging because spectra in the
SWIR are often used to estimate both materials. To compensate for this, some use NDVI
in conjunction with VIs in the SWIR region to help separate %BG and TSC. Here, our re-
sampling model selection procedure selected both SWIR and REI. REI reportedly
responds to changes in biomass (Gianelle and Guastella 2007; Fava et al. 2009) and
may be less affected by background (Cho et al. 2007). Figures 3 and 4 illustrate how
model estimates for %BG compare with TSC. While %BG was clearly homogenously
greater inside the fire line, modeled TSC was not homogenously lower. This was
corroborated by field data, where the lack of understory in burned areas was clearly
evident (higher %BG) but TSC was not anomalously low. Trails to the stocktank are also
evident in Figure 3, where %BG is high and TSC is low. This was expected, since travel
by livestock increases bare ground and suppresses vegetative growth. Patterns in %BG
and TSC were not consistently spatially correlated, suggesting some separation of bare
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ground from senescent vegetation. Application of both the SWIR-SR (ρ2128/ρ1642) and the
REI (ρ705/ρ754) to the %BG model likely assisted with spectral separation between
biomass and bare soil.

While statistical approaches are fast and easy to implement, the derived relationships
are recognized as being sensor-specific and dependent on site and sampling conditions,
and are expected to change in space and time (Baret and Guyot 1991; Colombo et al.
2003). The re-sampling VI selection method described here randomly partitioned the
data into training and validation sets 1000 times and chose the model with the smallest
average mean squared prediction error of the validation set. Alternatives, such as
radiative transfer models, rely on the interactions between radiation and photosyntheti-
cally active vegetation in a canopy (Darvishzadeh et al. 2011), but radiation and
reflectance relationships in senescent rangeland canopies have not been well character-
ized. For example, we found the slope of relationship between canopy height and TSC
(Equation 2) was much steeper in October than in July (Phillips et al. 2012).
Consequently, field data are required to train and test statistical models in the absence
of accurate biophysical parameters for mixed PV-NPV canopies (Brinkmann, Patzelt,
et al. 2011). Prediction of rangeland structural attributes with airborne hyperspectral data
is improved when the full spectrum is analyzed in PLSR (Cho et al. 2007). When VIs
analyses are needed, the re-sampling approach described here could provide more
parsimonious model selection than conventional stepwise regression.

Conclusions

Predictive mapping of canopy structural and chemical attributes are needed for rangeland
assessment and monitoring, particularly for lands managed to provide habitat for both
wildlife and livestock grazing. Here, we narrowed our target to herbaceous vegetation for
the purpose of predicting spatial variation in canopy attributes relevant to avian nesting
habitat and rangeland forage quality assessment. We found lower RMSEPs when the full
reflectance spectrum available from AVIRIS was modeled with PLSR for canopy struc-
tural and chemical properties than modeling specific regions of the spectrum with
vegetation indices. The SWIR (1260–1880 nm) was the most informative spectral region
for predicting PV, NPV, TSC, Canopy N, and %BG post growing-season. The novel re-
sampling VI model selection procedure described here represents an alternative to con-
ventional stepwise regression that avoids over-fitting and produces parsimonious VI
models with similar prediction errors.
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